Counting Triangulations of Planar Point Sets

نویسندگان

  • Micha Sharir
  • Adam Sheffer
چکیده

We study the maximal number of triangulations that a planar set of n points can have, and show that it is at most 30n. This new bound is achieved by a careful optimization of the charging scheme of Sharir and Welzl (2006), which has led to the previous best upper bound of 43n for the problem. Moreover, this new bound is useful for bounding the number of other types of planar (i.e., crossing-free) straight-line graphs on a given point set. Specifically, it can be used to derive new upper bounds for the number of planar graphs (207.84n), spanning cycles (O(68.67n)), spanning trees (O(146.69n)), and cycle-free graphs (O(164.17n)).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A QPTAS for the Base of the Number of Triangulations of a Planar Point Set

The number of triangulations of a planar n point set is known to be c, where the base c lies between 2.43 and 30. The fastest known algorithm for counting triangulations of a planar n point set runs in O∗(2n) time. The fastest known arbitrarily close approximation algorithm for the base of the number of triangulations of a planar n point set runs in time subexponential in n. We present the firs...

متن کامل

TEL-AVIV UNIVERSITY RAYMOND AND BEVERLY SACKLER FACULTY OF EXACT SCIENCES BLAVATNIK SCHOOL OF COMPUTER SCIENCE Counting Triangulations of Planar Point Sets

We study the maximal number of triangulations that a planar set of n points can have, and show that it is at most 30n. This new bound is achieved by a careful optimization of the charging scheme of Sharir and Welzl (2006), which has led to previous best upper bound of 43n for the problem. Moreover, this new bound is useful for bounding the number of other types of planar (i.e., crossing free) s...

متن کامل

Counting Simple Polygonizations of Planar Point Sets

Given a finite planar point set, we consider all possible spanning cycles whose straight line realizations are crossing-free – such cycles are also called simple polygonizations – and we are interested in the number of such simple polygonizations a set of N points can have. While the minumum number over all point configurations is easy to obtain – this is 1 for points in convex position –, the ...

متن کامل

On the Number of Pseudo-Triangulations of Certain Point Sets

We pose a monotonicity conjecture on the number of pseudo-triangulations of any planar point set, and check it in two prominent families of point sets, namely the so-called double circle and double chain. The latter has asymptotically 12n pointed pseudo-triangulations, which lies significantly above the maximum number of triangulations in a planar point set known so far.

متن کامل

Compatible triangulations and point partitions by series-triangular graphs

We introduce series-triangular graph embeddings and show how to partition point sets with them. This result is then used to prove an upper bound on the number of Steiner points needed to obtain compatible triangulations of point sets. The problem is generalized to finding compatible triangulations for more than two point sets and we show that such triangulations can be constructed with only a l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2011